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Motivation




MOTIVATION

m The properties and existence of the dark matter is one of the
most fascinating questions in cosmology.

m We present a dark fluid model described as a non-relativistic
and self-gravitating fluid

m We studied these coupled non-linear differential equation
systems using self-similar time-dependent solutions

= Our main goal of this research is to find scaling solutions of the
gravitational fields, which can be good candidates to describe the
evolution of the Universe or collapse of compact astrophysical
objects
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The Model




EULER-POISSON EQUATION

m Continuity Equation

Op + div(pu) = 0,
poru+ div(pu® u) = =V P(p) — pV® + pg

V20 = 47 Gp
P=P(p)
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EULER-POISSON EQUATION

u Continuity Equation

m Euler Equation

Op + div(pu) = 0,
poru+ div(pu® u) = =V P(p) — pV® + pg

V20 = 47 Gp
P=P(p)
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EULER-POISSON EQUATION

u Continuity Equation

m Euler Equation

Op + div(pu) = 0,
poru+ div(pu® u) = =V P(p) — pV® + pg

V20 = 47 Gp
P=P(p)

m Poisson Equation
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EULER-POISSON EQUATION

u Continuity Equation
= Euler Equation —\

Otp + div(pu) = 0,
poru+ div(pu @ u) = =V P(p) — pV® + pg
V20 = 47 Gp

m Poisson Equation \J

m Equation of State



m We used polytropic EoS:
P(p) = wp", where n=1

m Dark Fluid: w= —1
m Momentum conservation:
VP(p)+pVP =0



ROTATION, SPHERICAL SYMMETRY

m Rotation:
__ psin Ow?r

2 w : angular velocity

rg

m Rotation is slow! = Spherically symmetry is not broken

m Spherical Symmetry:

2u
Oep + (Orp)u+ (Bru)p + TP —0,
1 2
Beu + (ud,)u = Lop_ve4 Sln92w g
p £
Ad =47Gp
P=P(p) .
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SELF-SIMILARITY

m Self-similarity in 1D = Sedov-Taylor Ansatz
G. |. Taylor, British Report RC-210, June 27, 1941.
IF Barna, MA Pocsai, GG Barnaféldi Mathematics 10 (18), 3220

ccomref5) won-u(y)
o(r, ) = r%(tLﬂ),

u (f, g, h) shape-functions only depend on ¢ = rt=#
® o, [,7,6 similarity exponents
m The 3 describes the rate of spread of the spatial distribution

m Other exponents describe the rate of decay of the intensity of the
corresponding field
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SELF-SIMILAR EQUATION

u Self-Similarity: PDE reduce to ODE
m Depend only on ( self-similar variable

m Algebraic equation system for the exponents
=a=0,=1,v=2,and § =0

g (O) + FORQ) + A () + 2B _

)
wg'(()

—C*F(¢) + ¢ (OAC) + 0 = —h'(()¢ +w?sin4¢?,

H(¢) + h"(Q)¢ = g(¢)4mGC .
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Figure: Numerical solutions of the shape functions, the integration was
started at (o = 0.001, and the initial conditions of f((y) = 0.5, g(¢o) = 0.01,
h(¢o) =0, and h'(¢p) = 1 were used. For the better visibility function g(¢)
was scaled up with a factor of 200. The values are given in geometrized
units.



DYNAMICAL VARIABLES

To investigate fluid dynamics in time and space to understand general
trends or physical phenomena as the function of the initial conditions.

1
exin(r, t) = =p(r, t)u2(r, t), €tor(r, t) = €kin(r, t) + D(r, t).
2

Velocity Flow
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Figure: Different radial (1st row) and time (2nd row) projections of the
velocity flow, density, and gravitational potential density for the non-rotating
case



Connection to Friedmann Equation




NEWTONIAN FRIEDMANN EQUATION

= We are introducing a well-known scale-factor a(t) which contains
all of the temporal changes

= Relative distances in time: R(t) = a(t)/
m Q(t) € R3 is a sphere with radius R(t) and r € (0, R(t))

M(¢) :/Q(t) p(R(t),t)de47r/orp(R(t),t)R(t)2dR(t)

Mass Conservation

9 M) = 42 /p(a(t)/, §23(8)Pdl = 0



SELF-SIMILARITY AND FRIEDMANN

First Friedmann Equation

GO
pla(t)ht) — “a(t)
d dat |:t_7g(R( i3 t):| A R(1), )
ER(t) = u(R(1t),t) = (R, D =-3 Rt



Power series in the similarity variable

plr, ) ~ £7 Y5 paC" and u(r, £) ~ £ X5 unC”

In the relevant space and time scale

m p(r,t) ~ t77AC", where kK € RT
We assume, that

p(rt) ~ t77AC", and u(r, t) ~ t ¢ 8 upC”
n

Non-rotating case: w — 0 limit

Non-rotating:

u(r,t) ~ @ <U1C1 + u2§2)

Q>



ASSUMPTIONS

Summarizing this,

Non-Rotating: Rotating:
p(r,t) ~ t7VAC" p(r, t) ~ t7VAC"
u(r, ) ~ i ¢+ wl?  u(nt) ~ Y ik

m Non-autonomous first-order non-linear differential equation

Iﬁ:R(t) aF 3UQt_(a+2ﬂ)[R(t)]2 = %[’y + K;B] R(t) L 3U1R(t)t_(a+ﬁ) =0
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NON-ROTATING

General Solution for non-rotating case:

_ 3y tH
uy tﬁ+’7/ne uK

_a _ —
3Ry /s (U8 TR T (1 st gy

R(t) =

wi=1—(a+p) v:i=kK— [k

m The C; is an integration constant
m [ is the upper incomplete Gamma function.

® (o, 8,7,0) are known from the Sedov-Taylor Ansatz

t 6
R(t) = —5—= 3u2, where k = =
L w1
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ROTATING

For the non-rotating case, the differential equation is

8 k
~R(t) 1[7+nﬂ]R(t)+3t‘“Zak($> = 0. (1)

ot
=0

m It cannot be solved explicitly

m Hubble's law of expansion to determine the C; integration
constant

a(t)

a(t)

where Hy = 66.61’31::1)) km/s/Mpc! is the experimental value of the
Hubble-constant.

'Kelly, P. L. et al. (2023) Science doi:10.1126/science.abh1322

= Hy, if a(to) =1 (2)
t=tp
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EXPANSION RATE OF THE UNIVERSE
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Figure: Analytical (Non-Rotating) and numerical (Rotating) solutions of the
expansion rate of the Universe, the integration was started at ¢, = 0.001,
and the initial conditions of f{({y) = 0.5, g(¢p) = 0.008, h(¢y) = 0, and

H (o) = 1 were used. The results match well with the data from literature?.

Xiaoyun Li, et al. J.HEP, Gravitation and Cosmology, Vol.8 No.1, 2022

Balazs E. Szigeti, Imre F. Barna, Gergel /23




Summary




SUMMARY

m We used Sedov-Taylor-von Neumann ansatz to solve the
Euler-Poisson equation

m We used polytropic EoS to describe the Dark Fluid

Spherical symmetry and non-rotating/slow rotation

Connection with the classical Newtonian Friedmann equation

m Expansion rate of the Universe

Thank you!
Questions?
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