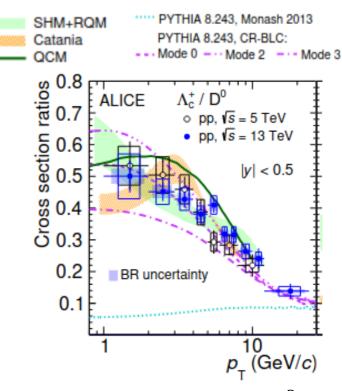
Zimányi 2022

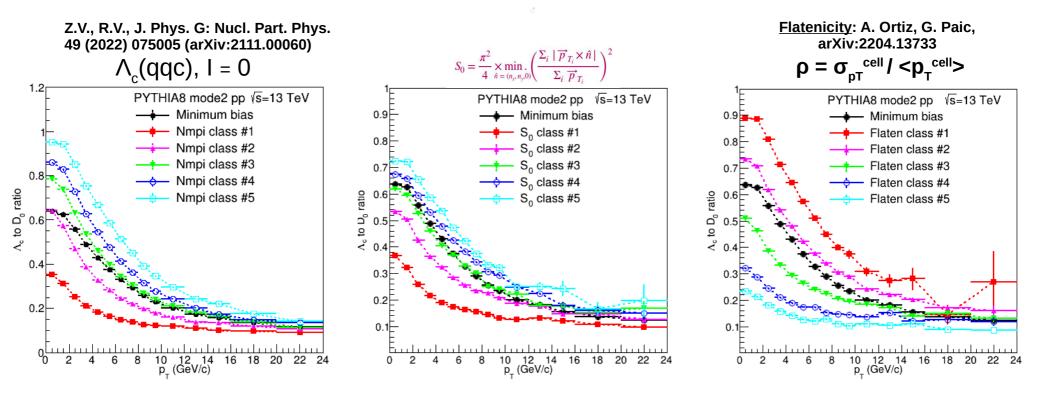
Event activity dependence of charm baryon production at LHC energies

Zoltán Varga^{1,2}, Róbert Vértesi¹

- 1. Wigner Research Centre for Physics
- 2. Budapest University of Technology and Economics



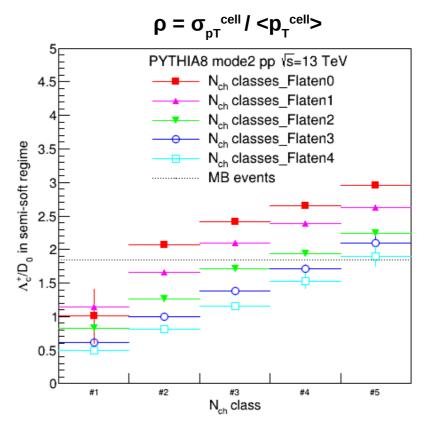
Production of heavy-flavor baryons


 Heavy-flavor production is usually described with the factorization approach: incoming <u>hadron PDFs</u>, hard <u>parton-parton scattering</u> and <u>fragmentation</u> are independent:

$$d\sigma_{AB\to C}^{hard} = \sum_{a,b} f_{a/A}(x_a,Q^2) \otimes f_{b/B}(x_b,Q^2) \otimes d\sigma_{ab\to c}^{hard}(x_a,x_b,Q^2) \otimes D_{c\to C}(z,Q^2)$$
Parton Distribution Function Partonic hard scattering Fragmentation (PDF) cross-section Function (FF)

- Traditional assumption: fragmentation functions are universal for different collision systems.
- Experimental results (ALICE, CMS, LHCb): significant enhancement in the Λ_C/D⁰ ratio in the semi-soft p_T range (2-8 GeV/c), compared to predictions from e+e-: no universality!
- Color reconnection beyond leading color (CR-BLC): Describes the multiplicity dependence.
- Multiplicity dependence: connected to the event activity!
 Needs to be better understood!




Λ_c/D^0 enhancement classified by spherocity and flatenicity

- The Λ_c/D^0 enhancement depends on the MPI in the lower p_T region.
- Spherocity allows decribing the enhancement in events without a leading trigger hadron.
- Flatenicity pulls apart the distributions much more than spherocity.

Λ_c/D^o enhancement in jetty and isotropic events

- Spherocity S₀ in minimum-bias events:
 - Λ_c/D^o enhancement is more prominent in spherical (UE-dominated) than jetty events

- Flatenicity ρ in minimum-bias events:
 - Λ_c/D^0 enhancement decreases with flatenicity, and **contrary to spherocity** the enhancement is sensitive to it in every N_{ch} classes
- CR-BLC model links the enhancement to the UE:
 - discrimination power in data from the upcoming LHC Run3.
- Flatenicity could be a better quantity to describe the MPI and the enhancement!